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SYNOPSIS 

A theoretical expression for the prediction of the transverse elastic modulus in fiber-rein- 
forced composites was developed. The concept of interphase between fibers and matrix was 
used for the development of the model. This model considers that the composite material 
consists of three phases, that is, the fiber, the matrix, and the interphase. The latter is 
the part of the polymer matrix lying at the close vicinity of the fiber surface. In the present 
investigation it was assumed that the interphase is inhomogeneous in nature with contin- 
uously varying mechanical properties. Different laws of variation of its elastic modulus and 
Poisson ratio were taken into account in order to define the overall modulus of the composite. 
Thermal analysis method was used for the estimation of the thickness of the interphase. 
The results obtained were compared with the respective values of other models as well as 
with experimental data. 0 1993 John Wiley & Sons. Inc. 

I NTRO DUCT10 N 

A unidirectional fiber-reinforced composite can be 
considered as a basic element from which composite 
structures are constructed and also the simplest one 
from the geometrical point of view. From the me- 
chanical point of view the simplest kind of fiber 
reinforced material is an elastic one, which is com- 
posed of linear elastic fibers and matrix. The study 
of the elastic properties of uniaxially fiber-reinforced 
materials on the basis of constituent elastic prop- 
erties and the prediction of the elastic moduli is one 
of the main engineering problems. 

A large number of theoretical models have been 
appeared in the literature. Paul' used the principles 
of minimum energy and minimum complementary 
energy to define the bounds on the elastic modulus 
of a macroscopically isotropic, two-phase composite 
with arbitrary phase geometry. 

Hill2 derived these same bounds using a different 
approach. Hashin and R ~ s e n , ~  attempted to tighten 
Paul's bounds to obtain more useful estimates of 
moduli for isotropic heterogeneous materials. They 
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have considered an idealized model of random array 
of parallel hollow or solid fibers embedded in a ma- 
trix. This model of a fiber-reinforced material is re- 
ferred to a composite cylinder assemblage. Closed- 
form expressions for elastic moduli and bounds for 
a fifth modulus of such an assemblage were obtained. 

Whitney and Riley4 presented a work somewhat 
analogous to that of Hashin and Rosen, but less rig- 
orous mathematically and written to appeal to the 
engineer rather, than to the mathematician. 

The fiber arrays have been extensively studied by 
Adams and T ~ a i . ~  They found that the hexagonal 
array analysis agree better with experiments than 
do results of the square array analysis. 

Problems of determining exact solutions to var- 
ious cases of elastic inclusions in an elastic matrix 
were treated by Muskhelishvili,' who used complex 
variable mapping techniques. In addition, numerical 
solution techniques such as finite difference and fi- 
nite elements have been used extensively. 

In contrast to the simple geometric model dis- 
cussed previously, there is a somewhat more com- 
plicated model known as the self-consistent model. 
In this, the average stress and strain in each phase 
are determined by the solution of separate problems 
in the case of multi-phase media. The material out- 
side the inclusion is assumed to be that of the un- 
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known “effectively” macroscopic properties. The 
self-consistent model was introduced by Hershey7 
and Kroner.’ Other self-consistent models include 
those by Hermans’ and Hill lo which have been dis- 
cussed by Chamis and Sendeckyj.” 

A third major type of model is that of three-phase 
model introduced by Kerner.12 This model involves 
taking the inclusion to be surrounded by an annulus 
of matrix material which in turn is embedded in an 
infinite medium of the unknown effective macro- 
scopic properties. 

Tsai13 and Halpin-T~ai’~ by using the models 
mentioned above developed simplified expressions 
for the moduli, in which different factors such as 
contiguity, fiber geometry, packing geometry and 
loading conditions have been taken into account. 

Among a large number of theoretical models ap- 
peared in the literature, only some of them take into 
account the existence of an intermediate phase, de- 
veloped during the preparation of the composite 
material and which plays an important role on the 
overall thermomechanical behavior of the composite. 

In a model developed by Theocaris et al., l5*I6 this 
intermediate phase has been considered initially as 
being a homogeneous and isotropic material. In a 
better approximation l7 a more complex model has 
been introduced, according to which the fiber was 
surrounded by a series of successive cylinders, each 
one of them having a different elastic modulus in a 
step-function variation with the polar radius. 

In ref. 18 the longitudinal elastic modulus EL and 
Poisson’s ratio VLT of a fiber-composite were deter- 
mined by assuming that the cylinder composite (fi- 
ber-interphase matrix) had well-defined material 
properties for the fiber and matrix cylinders whereas 
the mechanical properties of the intermediate hollow 
cylinder of the interphase were variable along its 
radius. The thickness of the interphase was deter- 
mined by thermal measurements of the heat capacity 
jump at the glass transition temperature of the filled 
and unfilled materials. 

Another consideration of the variable modulus 
interphase is the so-called unfolding model, ’’ which 
is based on the fact that the interphase constitutes 
a transition zone between fibers with high moduli 
and matrix with rather low moduli. By defining the 
thickness of the interphase with the help of accurate 
thermodynamic measurements of the heat capacity 
jump at Tg of the filled and unfilled substances and 
using the E, value of the composite defines com- 
pletely the variation of the Ei( r )  modulus. 

In the present investigation we have studied the 
quality of adhesion between fibers and the matrix 
by the three-phase model which considers the ex- 

istence of a third phase surrounding the fibers and 
having different mechanical properties than the re- 
spective properties of the two main phases which 
were considered as varying between the properties 
of fiber to those of the matrix. The laws of variation 
were assumed arbitrary to be simple ones, expressed 
by typical first-degree or second-degree curves. 

THEORETICAL FORMULAE USED FOR 
COMPARISON 

Paul’s’ lower Bound 

where ET is the transverse elastic modulus and E j ,  
uj and Em, u, are the elastic modulus and fiber volume 
fraction of fiber and matrix, respectively. 

Whitney-Riley4 Equation 

where K, is the bulk modulus and VAT and vTT are 
the longitudinal and transverse Poisson ratios of the 
composite respectively. The bulk modulus is given 
as: 

where G j ,  G, are the shear moduli of the two phases 
and kj = E j / 2 ( 1  - uf - Z U ~ ) ,  k ,  = E m / 2 ( 1  - v, 
- 2 v 3  

Tsai13 Equation 

For the elasticity approach in which the contiguity 
is considered, Tsai13 obtained for the transverse 
modulus the following expression: 
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with Kf  = E f / 2 ( l  - u f )  and Km = E m / 2 ( 1  - urn) 
where c denotes the degree of contiguity. The value 
c = 0 corresponds to no contiguity (isolated fibers) 
and c = 1 to perfect contiguity (all fibers in contact). 

Halpin-Tsai l4 Equation 

Halpin and Tsai14 in order to avoid complicated 
equations developed an interpolation procedure that 
is an approximate representation of more compli- 
cated micromechanics results. The essence of the 
procedure is that they shaved that Herman's' so- 
lution generalizing Hill's self-consistent model lo can 
be reduced to the approximate form: 

(5)  

with 

where [ is a measure of fiber reinforcement of the 
composite that depends on fiber geometry, packing 
geometry and loading conditions. 

Ekvall's*' Equation 

Ekval12' obtained a modification of the above 
lower bound (Eq. 1 ) in which the triaxial stress state 
in the matrix due to fibre restrained is accounted 
for: 

where 

For lamina thicknesses of one-filament diameter and 
square or rectangular filaments, Ekvall uses the 
simple assumption but attempts to eliminate the 
unequal longitudinal Poisson deformation by ap- 
plying additional longitudinal stresses such that 

This results in a biaxial state of stress, and he ob- 
tains 

for the transverse modulus. 

THEORETICAL CONSIDERATIONS 

The model introduced here is based on the mechan- 
ical behavior of the fiber-reinforced composite ma- 
terials. First of all it should be clarified that the 
composite material was treated as a three phase ma- 
terial in which the three phases are as follows: The 
first is the polymeric matrix which is characterized 
by its elastic modulus Em and Poisson's ratio u,. 
The second is the fibre which constitutes the filler 
and has elastic modulus Ef and Poisson's ratio u f .  

The intermediate phase, or interphase is consid- 
ered as consisting of an inhomogeneous and trans- 
versely isotropic (isotropy at the xy plane) material 
of finite thickness with elastic modulus E i ( r )  and 
Poisson's ratio ui ( r )  . ( see Fig. 1 ) . Both of them are 
supposed to vary with distance from fiber surface. 
The representative volume element [Fig. 1 ( a )  ] of 
this model consists of three separate regions (i.e., 
the fiber, the interphase, and the matrix). If we de- 
note by r f ,  r i ,  r ,  the outer radii of them, respectively, 
then the volume fractions of each material will be 
given by: 

where u, = 1 - uf - ui .  
It has been observed that, for the same volume 

fraction uf of the filler, an increase of the glass tran- 
sition temperature T,  indicates an increase of the 
total surface of the filler.21 This is because an in- 
crease in Tg may be interpreted as a further for- 
mation of molecular bonds and grafting between 
secondary chains of molecules of the matrix and the 
solid surface of inclusions, thus restricting signifi- 
cantly the mobility of neighbour chains. This in- 
crease leads to a change of the overall viscoelastic 
behaviour of the composite, by increasing the volume 
fraction of the strong phase of inclusions. 

This variation in the properties of polymers along 
their interfaces with inclusions is extended to layers 
of a sometimes significant thickness. This follows 
from the fact that, if only a thin surface-layer of the 
polymer was affected by its contact with the other 
phase, then the change in Tg should be insignificant, 
since the level of the glass transition temperature 
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a b 
Figure 1 
element of a unidirectional fiber composite, (b) Cross-sectional area. 

( a )  Schematic representation of the model used for the representative volume 

is associated with the bulk of the polymer, or, at 
least, with a large portion of it. 

The same phenomena appear when the volume 
fraction of the strong inclusions is increased. In this 
case, if the adhesion of the main phases is satisfac- 
tory, an increase of uf means an automatic increase 
of the strong boundary layer (stronger than the ma- 
trix) forming the interphases and this results forci- 
bly to an increase in Tg. 

A considerable amount of experimental work in- 
dicates a variation of Tg in composites with an in- 
crease of the filler. The degree, however, of this vari- 
ation and the character of its change may differ from 
composite to composite and also, for the same com- 
posite, depending on the method used for its mea- 
surement.'l 

Moreover, if calorimetric measurements are ex- 
ecuted in the neighbourhood of the glass transition 
zone, it is easy to show that jumps of energies appear 
in this neighborhood. These jumps are very sensitive 
to the amount of filler added to the matrix polymer 
and they were used for the evaluation of the bound- 
ary layers developed around fillers. 

The experimental data show that the magnitude 
of the heat capacity (or similarly of the specific heat) 
under adiabatic conditions decreases regularly with 
the increase of filler content. This phenomenon was 
explained by the fact that the macromolecules, ap- 
pertaining to the interphase layers, are totally or 
partly excluded to participate in the cooperative 
process, taking place in the glass-transition zone, 
due to their interactions with the surfaces of the 
solid inclusions. 

Moreover the increment of the fiber volume frac- 
tion increases the proportion of macromolecules 

which are in contact with fiber surface and are char- 
acterized by a reduced mobility. This is equivalent 
with an increase in interphase volume fraction and 
leads to the conclusion reported in ref. 21, stating 
that a relation holds between AC,, which expresses 
the sudden change in the heat capacity at the glass 
transition region, and the interphase volume fraction 
ui .  This relation is expressed by: 

where Ari is the thickness of the interphase and the 
parameter X is given by: 

in which ACL and AC; are the sudden changes of 
the heat capacity for the filled and the unfilled poly- 
mer respectively. 

Let us consider the cylindrical model of a cross- 
section as described in Figure 1 ( b )  . In order to find 
the elastic transverse modulus a radial pressure p 1  
is applied to the surface of the composite cylinder 
such that: 

Let us also assume that an axial stress is applied 
to it such that the axial strain is zero. This particular 
problem is an axisymmetric one, so that the dis- 
placements strains and stresses depend only on the 
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r-coordinate and they are independent of the polar 
angle 8. Then by using the Airy stress-function, @ 
the compatibility equation can be expressed by: 

d4@ 2 d3@ 1 d2@ 1 d @  
dr4 r dr3 r2  dr2 r3 dr 

v 4 9  = - + - - - - - + -- = 0 (12) 

This equation has the form of an Euler differential 
equation whose solution is given by: 

@ = Clln r + C2r21n r + C3r2 + C4 (13)  

Each one of the constituents of the composite ma- 
terial is characterized by a corresponding stress 
function. Thus the expressions €or the stresses in 
each one of the phases is expressed by: 

'Jr.f - - r F  ld@' = A + B ( 1 + 2 1 n r ) + 2 C  r 2  (14) 

A 
dr r 2  

= d2.Pf = - -+  B ( 3  + 2 In r )  + 2c (15) 

d2am 
dr r2 ~ 8 , ~  = 7 = - !? + G (  3 + 2 In r )  + 2 H  ( 17)  

1 d@i 
_ = - - = -  t + L (  1 + 2 In r )  + 2M 

t + ( 3  + 2 In r )  + 2M u%i = 2 - - - 

( 18) r dr r r.2 

( 19) d2ai  - 
dr r 

In order to avoid infinite stresses at r = 0 the con- 
stants A and B take the values A = B = 0. Thus it 
is valid that: 

For the matrix and interphase materials it can be 
shown by taking into consideration the strain con- 
ditions that: G = L = 0. Thus it may be obtained 
that 

F 
u ~ , ,  = - + 2 H  r2 

The condition that the 

Substituting the stresses from eqs (20) , ( 21 ) , and 
(22)  and solving for the axial stresses we find 

a,,f = 4 C ~ f ,  C J ~ , ~  = ~ H u , ,  uZ,i = 4Mvi (23) 

The radial displacements are given as: 

ur.f = r ~ f  = - 2 c  (1 - vf - 2v f ) r  2 ( 2 4 )  
Ef 

F 
- - ( 1 + ~ , ) + 2 H ( 1 - ~ , - 2 ~ ~ )  

1 = L[--(l K + vi) + 2 M ( 1  - v i -  2v: )  ( 2 6 )  
Ei r2  

The boundary conditions are: 

K 
' f At r = r f :  a,,/ = u ~ , ~  -P 2C = 3 + 2 M  

K F 
r r 

At r = ri: ur,i = ur,m + 7 + 2 M  = 7 + 2 H  (28 )  

At r = r f :  u ~ , ~  = u,,~ + 

2C( 1 - V f  - 2Vf2)Ei 

At r = ri  : ur,i = ur,m + 

F 

Em 2 M (  1 - ~i - 2 ~ :  ) - 7 ( 1 + vi) 
T i  " 1  

1 F 
T i  

I ~ g , ~  = - 7 + 2 H  

K 
r2  

axial strain be zero gives: 

(21)  r 

~ g , i = - - + + M  (22) 

ZH(1 - V ,  - 2 ~ ; )  -7 ( 1  + v , )  (30) 

F 
rm 

(31) - At r = r ,  : ur,m - -p22 + 7 + 2 H  = -pl 
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In order to find the solutions of the eqs. (27) to 
(31) we shall try different laws of variation express- 
ing Ei( r )  and vi( r )  in the interphase zone, as as- 
sumed in the development of the model. 

Linear Variation 

The first approximation is the linear variation for 
Ei( r )  and vi( r )  . According to this variation these 
quantities are given as: 

E i ( r )  = P + Qr and 

vi(r) = R + Sr with r f  < r < ri (32a,b) 

where P ,  Q ,  R ,  S are functions of the moduli and 
the radii of the main phases of the composite. In 
order to evaluate them we consider the following 
boundary conditions: 

A t  r = r f  : Ei = Ef and 

r = ri : Ei = Em 

vi = vf 

and vi = v, 

Substituting these values in Eq. (32a,b) we ob- 
tain: 

Efr i -E ,r f  - E f - E m r  
E i ( r )  = 

ri - r f  ri - r f  

and 

vfri - v,ri v, vf 
V i ( F )  = +- r 

ri - r f  ri - r f  

Hyperbolic Variation 

For this variation we assume: 

8 E i ( r )  = P + - and 
r 

S 
r 

vi(r)  = R + -  w i t h r f < r < r i  

With the previous boundary conditions we have: 

and 

Parabolic Varia tion 

For this variation we assume: 

vi(r) = Rr2 + Sr + T with rf  < r < ri (38a,b) 

In addition to the previous boundary conditions 
we also assume that the parabolas representing these 
variations must have their minimum values for Ei 
and their maximum values for vi at r = ri. Thus: 
At  

dEi d2Ei 
with - > 0 and r = r.* - = 0 

' *  dr dr 

dvi d2vi - _  - 0 with-> 0 
dr dr2 

By applying all the boundary conditions we find 

and 

The solution of the system of eqs. (27) to (31) 
after the substitution of the expressions Ei( r )  and 
vi(r) for each variation yields the unknown con- 
stants C ,  F ,  H ,  K ,  and M .  

The Transverse Elastic Modulus 

The transverse elastic modulus ET of the composite 
can be obtained by applying the energy balance to 
the composite cylindrical model. The strain energy 
of the system must be equal to the sum of the strain 
energies of the fiber, interphase, and matrix. Thus 

1 P:' 
2 s, K, vc 
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The expressions for the strains of the three phases 
are obtained from the stress-strain relationships as 
follows: 

2c 
E r , f  = - ( 1  - U f  - 2uf2) 

E f  

2c 
Q f  = - ( 1  - U f  - 2uf2) 

E f  
(43) 

1 F  
Em r2 

€r,rn = - [ - - ( 1  + u,) 

+ 2H( 1 - urn - z u ; ,  ( 4 4 )  1 
+ 2 H ( 1  - urn - 2u2, )  (45) 1 

2 v : )  (46) J 
( 1  + U i )  + Z M ( 1 -  ui - 2 u q )  ( 4 7 )  1 

Assuming the composite material to be macro- 
scopically homogeneous and to obey Hooke’s law, 
the following stress-strain relationships are appli- 
cable. 

In the relationships EL, ET denote the elastic lon- 
gitudinal and transverse moduli of the composite 
and uLT, UTT the Poisson’s ratios in longitudinal and 
transverse directions, respectively. 

The bulk modulus K, of the composite can be 
found by considering the change in volume caused 
by the applied pressure p l .  

1 + A V =  ( 1  + t x x ) ( l  + t W ) ( l  + c,) = ex, + tW 

since t,, = 0 
This yields: 

Using the above stress-strain relationships AV/V 
can be found as: 

The bulk modulus K, will be: 

We introduce the stress relationships from eqs. 
( 2 0 )  - ( 2 2 )  the strain relationships from eqs. ( 4 2 )  - 
( 4 7 ) ,  and the values of the constants in the right 
hand side; the value of the bulk modulus in the left- 
hand side of Eq. 41. Next, after some algebra the 
final expression for the elastic transverse modulus 
of the composite is obtained by using eqs. (8). We 
find for ET: 

longitudinal Elastic Modulus E and Poisson’s 
Ratio vLT 

For the calculation of ET from eq. ( 5 3 )  the longi- 
tudinal elastic modulus E L  and Poisson’s ratio ULT 

of the composite are given in ref. 18 as follows: 

and 

for linear variation. 
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x [ ( 1 - u,)"2 + U y ]  

+ 2 ( V f  - V m ) [ U f ( l -  u , ) ] ' / 2  (57)  

for hyperbolic variations. 

3 ( E f  - E, ) [ ( l  - u m ) 3 / 2  + U y ( 1  - u,) + Uf(1  - u,)'/2 + U y ]  

6[ ( 1  - - uf1I2] 
EL = EfUf + 

6 { E f ( l  - u,) + E,uf- 2E,[uf(l  - ~ , ) ] " ~ } [ ( l  - + u ; / ~ ]  + (58 )  
6 [ ( 1 - u,) 1 / 2  - uf1I2] 

and 

- 8(Vf - v , ) ( l -  u,)'/2[1 - u, + U f  + [ U f ( l  - u,)] ' /2] 

6 [ ( 1 - u,) ' I 2  - u ; / ~ ]  

for parabolic variation. 

Transverse Poisson's ratio vT7 

The Poisson ratio VTT of the composite can be cal- 
culated by the law of mixtures eq. ( 22 ) , modified in 
order to include the interphase. 

which yields: 

Since u i ( r )  is assumed to be variable in the inter- 

phase region, the relationship takes the following 
form in order to take into account this variation: 

which finally gives: 

Thus, it enables the calculation of a theoretical value 
for the Poisson's ratio VTT by introducing the as- 
sumed law of variation of v i .  
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Figure 2 A typical DSC-trace for the specific heat jump 
AC, at the glass-transition region of E-glass fiber epoxy 
composites and the mode of evaluation of AC,’s. 

EXPERIMENTAL WORK 

The unidirectional glass-fiber composites used in the 
present investigation consisted of an epoxy matrix 
(Permaglass XE5/ 1, Permali Ltd., U.K.) reinforced 
with long E-glass fibers. The matrix material was 
based on a diglycidyl ether of bisphenol A together 
with an aromatic amine hardener ( Araldite MY 750/ 
HT972, Ciba-Geigy, U.K.). The glass fibres had a 
diameter of 1.2 X m and were contained at a 
volume fraction uf = 0.65. 

The volume fraction uf was determined, as cus- 
tomary, by igniting samples of the composite and 
weighting the residue, which gave the weight fraction 
of glass as: wf = 79.6 k 0.28%. This and the measured 
values of the relative densities of permaglass ( p f  
= 2.55 gr/cm3) and of the epoxy matrix ( p ,  = 1.20 
gr/cm3) gave the value uf = 0.65. The experiments 
which have been carried out on five specimens gave 
for the transverse elastic modulus the mean value ET 
= 16.2GN/mZ with crosshead speed 0.2 cm/min. 

On the other hand, chip specimens with a 0.004 
m diameter and thicknesses varying between 0.001 
and 0.0015 m made either of the fiber composite of 
different uf’s, or of the matrix material, were tested 
on a differential scanning calorimetry (DSC ) Ther- 
mal Analyzer a t  the zone of the glass transition 
temperature for each mixture, in order to determine 
the specific heat capacity values. 

The values of the weight factor X were derived 
from the values of ACL and AC: measured on the 
AC, = f ( T )  diagrams according to Fig. 2. The values 
of X determined from these DSC tests allowed the 
evaluation of the thickness Ari of the interphase for 
each composite. 

It has been shown that for unidirectional fiber- 
reinforced composites the simple relation between 
the volume fraction of interphase, ui7 and uf holds: 

with the constant C for our case found to be” 

c = 0.123 

Table I gives the values of ui and Ari’s for the various 
fiber-volume contents, as they have been derived 
from our tests. 

Figure 3 presents the variation of AC,’s at  the 
glass transition temperature, the weight factor A, as 
well as the values ui and u,, versus the fiber volume 
content uf in the E-glass fiber-reinforced composites. 

Introducing now the values for ri = r f  + Ari and 
ui for the various fiber volume contents into eqs. 
(53) and (60), respectively, we may calculate the 
values for the transverse elastic modulus of the 
composite, ET, corresponding to the three laws of 
variation of the Ei and vi moduli considered in the 
paper. 

The calculations for the transverse elastic mod- 
ulus ET, were carried out with Ef = 72 GN/m2 and 
E, = 3.5 GN/m2 for the fiber and matrix moduli, 
and vf = 0.20 and u, = 0.35 for their Poisson’s ratios 
respectively. 

Table I 
(Ar i  = ri - rt) and Volume Fraction ui Versus 
Fibre Volume Fraction ut 

Values of Interphase Thickness 

“f Ti (w) ui 

0.0 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 

6.0 
6.037 
6.073 
6.110 
6.146 
6.182 
6.217 
6.254 
6.288 

0.0 
1.20 x 10-~ 
4.92 x 10-3 

11.07 X 
19.68 X 
30.75 X 
44.28 X 
60.27 X 
78.22 X 
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Figure 3 The variation of the specific heat jumps AC, 
a t  glass transition temperature of E-glass fiber epoxy 
composites, versus the fiber volume content, uf as well as 
the values of A-factor, the interphase, volume and matrix 
contents ui and u,. 

RESULTS AND DISCUSSION 

The values of the interphase-volume fraction, as 
well as its thickness for various fiber-volume frac- 
tions are given in Table I. These results were eval- 
uated from the experimentally obtained values of 
the sudden change in heat capacity in the transition 
region of filled and unfilled specimens and then in- 
troducing these values into eqs. (8) - ( 10). 

From this table it is clear that Ari and ui are in- 
creasing functions (at  least up to a certain value) 
of the fiber volume fraction. This type of variation 
is consistent with the fact that, because of the ex- 
istence of fibers, a part of macromolecules that are 
in the close vicinity of the fiber surface, that is within 
the interphase region are characterized by a reduced 
mobility. As a result of this type of behaviour of 
these macromolecules, the higher the fiber content, 
the larger fiber surface and, consequently, the higher 
amount of macromolecules with reducing mobility 
are developed in the matrix material. 

In Figure 4 and in Table I1 the theoretical values 
of the transverse elastic modulus E T  calculated from 
eq. (53)  are presented in respect of fiber content uf. 
The theoretical values of the transverse Poisson's 
ratio UTT as calculated by the interphase model from 
eq. (60) and used in eq. (53) are given in Table 111, 
together with other theoretical values from the lit- 
erature. The predictions of E T  by the procedure de- 
scribed in previous section, were compared with the 
respective values given by eqs. ( l ) ,  (2), and (4) -  
( 7) .  This comparison reveals discrepancies. Any 
agreement between two predictions can be observed 
only for some fiber contents. However it can be seen 
that there is a good correlation between the values 
given by eq. (53)  and those predicted by Halpin and 
Tsai14 and given by eq. (7) ,  The predictions of 
Whitney and Riley' given by eq. ( 2 )  are closer to 
those of Tsai13 given by eq. ( 4 )  with c = 0. The 
values calculated by eq. ( 4 )  but with c = 1 are very 
high and differ very much from all others. 

If we compare the theoretical predictions with 
the experimental values presented in the same figure, 

Table I1 
Given By the Interphase Model and Other Theories 

Theoretical Values of the Transverse Elastic Modulus ET 

Er(GN/m2) Interphase Model (eq. 53) 

Lower Tsai13 eq. (4) Whitney Halpin Ekvall" eq. 
Bound' Riley4 Tsai14 

uf Linear Hyperbolic Parabolic [eq. (1)J c = 0 c = 1 eq. (2) eq. (5) (6) (7) SihZ8 

0.0 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 4.64 3.50 3.50 
0.10 5.33 5.33 5.32 3.87 4.03 5.37 5.13 4.50 5.12 4.21 4.13 
0.20 6.57 6.57 6.56 4.32 4.68 7.61 6.08 5.70 5.70 4.78 4.55 
0.30 7.90 7.90 7.88 4.90 5.53 10.34 6.98 7.19 6.45 5.45 
0.40 9.52 9.52 9.48 5.65 6.62 13.69 8.02 9.08 7.41 6.31 
0.50 11.70 11.70 11.60 6.68 8.09 17.87 9.31 11.54 8.74 7.46 9.16 
0.60 14.93 14.93 14.67 8.16 10.18 23.19 11.04 14.88 10.57 9.11 11.71 
0.70 20.25 20.20 19.64 10.48 13.38 30.10 13.53 19.71 13.44 11.67 
0.80 30.93 30.81 29.22 14.65 18.91 39.41 17.48 27.27 18.43 16.20 
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Figure 4 
terphase model, compared with those from other theories and with experimental values. 

Theoretical predictions of transverse elastic modulus ET obtained by the in- 

we may also observe discrepancies. Only the exper- 
imental value for uf = 0.65 obtained by Ogorkiewicz 
and Weidman25 is in perfect agreement with that 
obtained in this work. They are also in good agree- 
ment with the theoretical values obtained from eqs. 
(5) and (53 ) .  The experimental results given by 
Clements and Moore27 are situated between the 
theoretical curves given by eqs. (53)  and ( 5 )  in one 
part and eqs. ( 2 )  and (4) in the other part. For uf = 
0.65 there is an agreement with the experimental 
value given in ref. 27. Also we may observe that the 
experimental results obtained by Sih et a1.28 are 
closer to the theoretical curves given by eqs. ( 2 )  and 
( 4 )  for c = 0. Finally the experimental value obtained 
by O g o r k i e ~ i c z ~ ~  for uf = 0.65, is superior to the 
theoretical values except those of Tsai13 for c = 1. 

A slight difference of the predictions given by eq. 
(53)  with respect to the experimental results might 

have been expected because of the alignment of the 
fibers which is very difficult to achieve during the 
preparation of the specimens. 

In addition to the misalignment of the fibers, a 
great part of the discrepancies observed between 
theory and experiment can be attributed to the in- 
teraction between the fibers, that it is not taken into 
account in the theoretical development and to the 
adhesion efficiency between fibers and matrix. This 
latter may be incorporated in the extent of the in- 
terphase which in this way, takes into account any 
imperfections in the adhesion of the phases. 

From the comparison of the selected laws of vari- 
ation for both the elastic modulus Ei( r )  and Pois- 
son’s ratio ui ( r )  , it becomes clear that there are no 
serious discrepancies between the values predicted 
by the various approximate expressions for the vari- 
ation of Ei ( r )  and vi( r )  . The linear and hyperbolic 
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Table I11 
as Calculated by the Interphase Model and Other Theories 

Theoretical Values of the Transverse Poisson’s Ratio urn 

UTT Interphase Model eq. (60) 
Halpin Lower Tsai13 

Linear Hyperbolic Parabolic Bound’ c = o  TsaiI4 Sih2’ 

0.0 0.350 0.350 0.350 0.350 0.350 0.350 0.350 
0.10 0.325 0.325 0.326 0.326 0.332 0.333 0.330 
0.20 0.304 0.304 0.304 0.304 0.315 0.316 0.320 
0.30 0.285 0.285 0.285 0.286 0.298 0.300 
0.40 0.268 0.268 0.268 0.269 0.283 0.284 
0.50 0.253 0.253 0.253 0.255 0.267 0.269 0.300 
0.60 0.239 0.239 0.240 0.242 0.253 0.254 0.290 
0.70 0.227 0.227 0.228 0.230 0.239 0.240 
0.80 0.216 0.216 0.217 0.219 0.225 0.226 

Uf 

variation of the interphase properties give slightly 
greater values for ET than the parabolic and this for 
uf > 0.5. It seems that the choice of a specific law of 
variation is not crucial. 

However, if we take into consideration the con- 
dition of a smooth variation of E i ( r ) ,  i.e., 
dEi( r )  dr I r=ri = 0, then the parabolic variation, 
which satisfies approximately this condition, must 
be accepted as the best of all approximations. 

CONCLUSIONS 

The majority of theoretical models, describing the 
physical and mechanical properties of composites, 
consider the surfaces of inclusions as perfect math- 
ematical surfaces. In this way, the transition of the 
mechanical properties from the one phase to the 
other is done by jumps in the characteristic prop- 
erties of either phase. This fact introduces high- 
shear straining at  the boundaries, which is an un- 
realistic fact. 

In order to alleviate this singular and unrealistic 
situation, a model was presented in this study, in 
which a third phase, the interphase, was considered 
as developed along a thin boundary layer between 
phases, during the polymerization of the matrix, 
whose properties depend on the individual properties 
of the phases and the quality of adhesion between 
them. 

This kind of interphase, which was also detected 
by experimental methods, possesses variable prop- 
erties, accommodating the two extremes between 
inclusions and matrices. 

In our work, by using Lipatov’s theory interre- 
lating the abrupt jumps in the specific heat of com- 
posites at the glass transition temperature with the 

values of the extents of these boundary layers, the 
thickness of the interphase was calculated. 

It was observed that the interphase which is cre- 
ated between the fibers and the polymeric matrix of 
the unidirectional fiber composites, influence the ef- 
fective properties of the composites. In this paper a 
new relation for the transverse elastic modulus was 
derived, which takes into account the above men- 
tioned interphase layer. This was succeeded by con- 
sidering the contribution of interphase, which is an 
inhomogeneous phase between the fiber and the 
matrix in the concept of the well known Hashin- 
Rosen model. 

The new relation yields satisfactory results when 
it is compared with existing experimental data and 
other theoretical formulae of the literature. The 
theoretical predictions of this relation are in better 
agreement with corresponding experimental results 
than other theoretical values which were derived 
from research works accepted as successful models 
for defining the transverse elastic modulus of uni- 
directional fiber composites. 
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